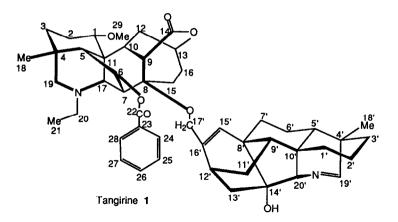

Tangirine, A Novel Dimeric Alkaloid from *Aconitum Tanguticum* (Maxim.) Stapf, W.T.Wang

Balawant S. Joshi^{a*}, Yili Bai^a, Di Hua Chen^b and S. William Pelletier^{a*} ^aInstitute for Natural Products Research and Department of Chemistry, University of Georgia, Athens, GA 30602-2556, U.S.A.; ^bChinese Academy of Medical Sciences, Beijing, China

Abstract: A novel diterpenoid alkaloid tangirine (1) has been isolated from *Aconitum tanguticum*. Its structure was elucidated by multidimensional ¹H and ¹³C nmr spectroscopy.

In an earlier communication, the isolation and structure determination of tanoutisine from Aconitum tanguticum (Maxim.) Staff, W.T.Wang were described.¹ We report herein the structure of a dimeric diterpenoid alkaloid tangirine, isolated in 0.001% yield from the neutral CHCl₃ fraction obtained during the isolation of tangitisine by chromatography over Al_2O_3 . The molecular formula of tangirine² (1) was established to be C49He2N2O7 by HRFAB-MS (m/z 790.4558, calc, 790.4557). Sixty-one protons and 49 carbons were visible in the ¹H and ¹³C nmr spectra of 1 in CDCI3 and all one bond ¹H-¹³C connectivities were established by a HETCOR experiment (Table1). The DEPT spectrum indicated that tangirine possessed 11 quaternary carbons (s), 19 methines (d), 15 methylenes (t) and 4 methyls (g). Out of these, the seven carbon singlets at δ 173.3, 166.6, 130.8, 78.7, 48.8, 34.7, the eleven doublets at δ 132.3, 130.2 (2C), 128.2 (2C), 82.3, 75.1, 74.0, 62.9, 55.9, 48.2, 44.7, 43.0, the seven triplets at § 57.4, 48.8, 36.3, 31.2, 29.7, 29.2, 26.7 and the three guartets at δ 55.0, 25.9 and 13.5 appeared to belong to 6-benzoylheteratisine³ (1; R=H). The up field shifts of C-7 and C-15 by ~ 4-5 ppm when compared with the values in 6-benzovlheteratisine can be attributed to the bulky substituent group attached at the C-8 position. The ¹H-¹H COSY, the NOESY, and the HMBC spectral results (Table 1) are consistent with this partial structure for tangirine. The mass spectral fragmentations² also support the presence of a methoxyl group at C-1⁵ and a benzoate ester group in 1.

The group R in tangirine is attached at C-8 through an oxygen function forming an ether. This portion C₂₀H₂₆NO observed as a fragment in the ms (m/z 296, R+; m/z 494 M+–R), showed in the ¹³C nmr spectrum, one sp² singlet at δ 146.0, four sp³ singlets at δ 72.5, 45.0, 44.9, 43.1, two sp² doublets at δ 169.2, 127.8, four sp³ doublets at δ 80.3, 46.4, 44.3, 31.5, eight methylenes at δ 60.4, 42.8, 31.5, 30.6, 30.5, 28.4, 27.4, 20.6 and one methyl at δ 19.0. The ¹H nmr signal at δ 3.82 (2H, *dd*, AB, J=12.0 Hz; ¹³C, 60.4 ppm), showing a connection (COSY, nOe) with δ 4.98 (1H, br *s*; ¹³C, 127.8 ppm) suggested the presence of the grouping, –CH=C--CH₂–O- in R. Also the signal at δ 7.32 (1H, *d*, J=2.5 Hz; ¹³C, 169.2 ppm) was coupled (COSY) to δ 3.30 (1H, br *s*; ¹³C, 80.3 ppm) indicative of the system -C-CH=N-CH- in R. The three-proton singlet at δ 1.00 (¹³C, 19.0 ppm) suggested the presence of a tertiary methyl group. The molecular formula C₂₀H₂₆NO, biogenetic considerations and the functional groups described, suggested one of the three possible structures A, B or C for R.


The guaternary carbon singlet at 72.5 ppm can be assigned to C-14' in A. or to C-7' in B or C. The other singlets at 45.0, 44.9 and 43.1 ppm were assigned to C-4', C-10' and C-8', respectively. Of the two closely appearing signals. 45.0 ppm was assigned to C-4' as this signal showed a two-bond correlation to H-19' (8 7.32; ¹³C, 169.2 ppm) in the HMBC⁶ spectrum (Table 1). Also, C-10' showed a three-bond correlation with the proton at δ 1.32 (¹³C at 27.4 ppm, HMBC) which may be assigned to C-2' or C-6'. The methine proton at § 1.18 (¹³C, 44.3 ppm) was assigned to C-5' as this correlated to H-20' (§ 3.30; ¹³C, 80.3 ppm) in the long range COSY (LRCOSY) spectrum and showed a three-bond correlation with the tertiary methyl CH₃-18' (8¹H 1.00; ¹³C, 19.0 ppm, HMBC). H-5' exhibited an nOe to H-3' (8, ¹H 1.22: ¹³C. 30.6 ppm). The most down field guaternary carbon at 146.0 ppm is clearly assigned to C-16'. The 2D COSY spectrum showed a correlation of H-15' (8 4.98) to H-12' (8 2.00) and to the methylene at C-17' (§ 3.82, ¹³C, 60.4 ppm). An important clue to the attachment of the two halves of this dimeric alkaloid is an nOe observed between H-7 proton of 6-benzov/heteratisine and the H-17' methylene of the remaining part of the molecule. In the HMBC spectrum, H-15' (& 4.98) showed a twobond correlation to C-8', and a three bond correlation to C-17', which is in agreement with all the three structures A, B, or C. H-15' also showed a correlation to 31.5 ppm (overlapping signals for a CH₂ and a CH). In the case of A, these carbons are assigned to C-7' and C-12' or C-9', whereas in B these have to be assigned to C-14' and C-9' or C-12' and in C to C-14', C-9' or C-13'. The crucial evidence in support of structure A was the observed correlations of H-13' in the HMBC spectrum. One of the methylene protons at δ 1.52 ascribed to H-13'a (¹³C, 42.8 ppm) is related to C-8' (43.1 ppm, 3 bonds separated), C-12' (31.5 ppm, 2 bonds), C-16' (146.0 ppm, 3 bonds) and C-20' (80.3 ppm, 3 bonds). A correlation of any methylene proton, two or three bonds separated from C-16' (146.0 ppm) to C-20' (80.3 ppm) is possible only in the case of structure A. This evidence excludes the alternative structures B and C for R. After assigning five methine carbons as discussed, the remaining signal at 46.4 ppm was assigned to C-9'. In the HMBC spectrum, the methylene protons at δ 1.42 (13C, 30.5 ppm) showed a relation to C-5' (44.3 ppm), three-bonds separated and were assigned to H-1'. The methylene carbons appearing at 27.4 and 20.6 ppm were assigned to C-2' and C-6', respectively, by comparison with the values assigned to dihydroatisine (C-2 23.2, C-6 17.6 ppm),⁷ and dihydroajaconine (C-2 23.1, C-6 17.6 ppm).⁸ The ¹³C assignments, the¹H COSY and NOESY results, and the HMBC data for R given in Table 1 confirm the structure 1 for tangirine. Tangirine is the only example of a dimeric alkaloid in which a norditerpenoid and a diterpenoid alkaloid are joined together. Six other dimeric alkaloids of this class ⁹, e.g. staphidine, staphisine, etc., all isolated from *D. staphisagria*, are C₂₀-diterpenoid alkaloids of the atisane-type, dimerized at the C-17, C-17', 15'(O), 16 positions to form spiro ethers.

5

Position	δ ¹³ C	δ ¹ Η (J=Hz)	COSY	нмвс (Н→С)	nOe
		(6-benzo	ylheteratisine	part)	
1	82.3 (d)	3.18 (m)	-	29-OMe, 17	-
2	26.7 (t)	2.13 (m)	-	-	-
3	36.3 (t)	H3a: 1.22 (m)	-	-	НЗЬ
		H3b: 1.59 (m)			H3a
4	34.7 (s)	-	-	-	-
5	55.9 (d)	1.58 (br <i>s</i>)	H17, H6	4, 6, 10, 11, 17, 18, 19	18-Me
6 7	74.0 (d)	5.64 (d, 7.2)	H7, H5	4, 5, 8, 11, 22	18-Me, 7, 19
	44.7 (d)	2.95 (d, 7.2)	H6	5, 8, 9, 11, 17	20
8	78.7 (s)	-	-	-	-
9	48.2 (d)	4.19 (d, 8.0)	H10	8, 10, 12, 14, 15	5, 10
10	43.0 (d)	2.45 (m)	H12a	8	5
11	48.8 (s)	-	-	-	-
12	29.2 (t)	2.13 (m), 3.15 (m)	H10, H13	10, 11, 13	10
13	75.1 (d)	4.73 (dd, 5.5)	H12a, H16	10	-
14	173.2 (s)	-	-	-	-
15	31.2 (t)	H15a: 1.82	H15b	-	-
	0	H15b: 2.04	H15a	-	-
16	29.7 (t)	H16a: 1.83	H16b	8	16b
	20.7 (1)	H16b: 2.40	H16a		16a
17	62.9 (d)	3.60 (br s)	H5	5, 6, 11, 19, 20	7, 16a, 20
18-Me	25.9 (q)	0.86 (s)	115	3, 4, 5, 19	6
19	57.4 (t)	H19a: 2.19	H19b	3, 18, 20	19b
13	57.4 (tj	H19b: 2.65	H19a	3, 4, 5, 17	19a
			1154	3, 4, 5, 17	130
20	48.8 (t)	(d, 12.0) 2.52 (AB, 7.2)	21-Me	21-Me, 17, 19	21-Me
20 21-Me			H20	21-1416, 17, 19	20
22	13.5 (q)	1.08 (t, 7.2)	1120	20	20
	166.6 (s)	-	-	-	-
23	130.8 (s)	-	-	-	-
24,28	130.2 (d)	8.05	H25, H27	22, 26	9, 25, 27
05 07	400 0 (4)	(dd, 7.0, 1.4)		<u> </u>	a. aa aa
25,27	128.2 (d)	7.43 (t, 7.1)	H24, H26, H28	23, 24, 28	24, 26, 28
26	132.3 (d)	7.53 (t, 7.1)	H25, H27	24, 28	25, 27
29-OMe	55.0 (q)	3.29 (s)	-	1	-
			(A)		
1'	30.5 (t)	1.42 (m)	•	5'	-
2'	27.4 (t)	1.07, 1.32 (m)	-	10', 4'	-
3'	30.6 (t)	1.22 (m)		-	5'
4'	45.0 (s)	-	-	-	-
5'	44.3 (d)	1.18 (br s)	H20'	18'	3'
6'	20.6 (t)	1.48 (m)	•	-	-
7'	31.5 (t)	H7'a: 1.36 (m)	Н7'Ь	8', 14'	-
		H7'b: 1.48 (m)	H7'a		-
3'	43.1 (s)		-	-	-
) '	46.4 (d)	0.87 (m)	-	-	-
10'	44.9 (s)	-	-	-	-
11'	28.4 (t)	1.43, 1.50 (m)	-	-	-
12'	31.5 (d)	2.00 (m)	H13'b	-	-
3'	42.8 (t)	H13'a: 1.05 (m)	H13'b	-	
		H13'b:1.52 (m)	H13'a	8', 12', 16', 20'	-
4'	72.5 (s)	-	-	-	-
15'	127.8 (d)	4.98 (br s)	H12', H17'	7', 8', 12', 17'	7,' 17'
6'	146.0 (s)		-	-	·, ·/
17'	60.4 (t)	3.82 (AB,12.0)	- H15'12', 15', 16'	- 7, 12'	-
18'-Me	19.0 (q)	1.00 (s)		7, 12 3', 4', 19'	19'
19'	169.2 (d)		- H20'		18'-Me
	103.2 (u)	7.32 (d, 2.5)	1140	4', 18', 20'	10 - ME
20'		3.30 (br s)	H19'	-	-

•••

Table 1. nmr data for tangirine (1).

Acknowledgments: We are grateful to Dr. A. K. Ganguly for the hrms and Dr. J. S. Harwood for his help in determining some nmr spectra.

References

- 1. Joshi, B. S.; Chen, D. H.; Zhang, X.; Snyder J. K.; Pelletier, S. W. Heterocycles, 1991, 32, 1793.
- Mp: 266-268°(dec.). [α]D¹⁹ + 84.2° (c, 0.36, CHCl₃), ir (KBr) v max 3450, 1748, 1708; eims, m/z (rel. int.): 790 (M⁺, 1%), 775, (M -CH₃,17), 759 (M -OCH₃, 100), 685 (M -COC₆H₅, 31), 494 (M -C₂₀H₂₆NO, 18), 478 (C₂₀H₂₆NO₂⁺, 88), 296 (C₂₀H₂₆NO⁺, 18), 105 (COC₆H₅⁺, 80), 77 (C₆H₅⁺, 22).
- "Alkaloids: Chemical and Biological Perspectives" Vol. 2, Ed. S. W. Pelletier, Wiley Interscience, 1984, p. 285. The ¹³C chemical shift values (δ) for C-5 (55.9), C-7 (49.9), C-9 (48.9), C-12 (29.4), C-15 (35.3), C-16 (28.8), C-19 (57.5) and C-29 (54.9) for 6-benzeylheteratisine have been revised on the basis of detailed nmr studies on 1. The values for heteratisine and 6-acetylheteratisine⁴ have also been revised from detailed nmr studies.
- 4. de la Fuente, G.; Gavin, J. A.; Acosta, R. D.; Morales, J. A. *Heterocycles*, **1988**, *27*, 1; Jiang, Q.P.; Pelletier, S. W. *Tetrahedron Lett.*, **1988**, *29*, 1875.
- Pelletier, S. W.; Aneja, R. *Tetrahedron Lett.*, **1967**, 557; Yunusov, M. S.; Rashkes, Y. V.; Telnov, V. A.; Yunusov, S. Y. *Khim. Prir. Soedin.*, **1969**, *5*, 575.
- 6. Bax, A.; Sumners, F. F. J. Am. Chem. Soc.. 1986, 108, 2093.
- 7. Mody, N. V.; Pelletier, S. W. Tetrahedron, 1978, 34, 2421.
- 8. Pelletier, S. W.; Sawhaney, R. S.; Mody, N. V. Heterocycles, 1978, 9, 241.
- Pelletier, S.W.; Mody, N.V.; Djarmati, Z.; Lajsic, S.D. J. Org. Chem., 1976, 41, 3042; Pelletier, S. W.; Djarmati, Z.; Mody, N. V. Tetrahedron Lett., 1976, 1749 and references cited therein.

(Received in USA 25 June 1993; accepted 21 September 1993)